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Empirical Bayes and Adjusted Estimates Approach
to Estimating the Relation of Mortality to Exposure of PM10

Alain Le Tertre,1∗ Joel Schwartz,2 and Giota Touloumi3

In the framework of the APHEIS program (Air Pollution and Health: A European Informa-
tion System), a health impact assessment of air pollution in 26 European cities was performed
for particles of an aerodynamic diameter less than or equal to 10 µm (PM10). For short-
term effects, it was based on overall estimates from the APHEA-2 project (Air Pollution
and Health: A European Approach). These city-specific risk assessments require city-specific
concentration-response functions, raising the question of which concentration-response is
most appropriate. Estimates from city-specific models are more specific, but have greater
uncertainty than those provided from multicity analyses. We compared several estimates de-
rived from the city-specific analyses in cities that were part of the APHEA-2 project, as well
as in a city that was not included in APHEA-2 but was part of the APHEIS project. These
estimates were: the estimates from a local regression model, the adjusted estimates based on
two significant effect modifiers identified through meta-regression models, and the city-specific
empirical Bayes (shrunken) estimates and their underlying distribution. The shrunken and ad-
justed estimates were used to improve the estimation of city-specific concentration-response
function. From these different estimates, attributable numbers of deaths per year were calcu-
lated. The advantages and limits of the different approaches are discussed through real data
and in a simulation study.
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1. INTRODUCTION

In the last decade, a number of epidemiologi-
cal studies have shown that ambient air pollution
adversely affects human health even at levels lower
than current national standards.(1) Particulate mat-
ter is the pollutant that has most consistently been
associated with short-term effects on mortality. Risk
analyses based on these results have already been
published.(2–5) Typically, an overall estimate (based
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on a meta-analysis) is used for all cities, assuming
that the concentration-response relationship is the
same everywhere. Many studies are using an over-
all estimate derived either from multicity studies,
such as APHEA-1(1) or APHEA-2(6) and NMMAPS
(National Mortality and Morbidity Air Pollution
Study),(7) or from the literature. Overall estimates are
computed using a random-effect approach that takes
into account the heterogeneity of the effects among
cities/studies. However, significant heterogeneity, if
present, suggests that the use of a single estimate in
all cities is not appropriate. In many cases risk assess-
ment in a particular city, where an original study has
been conducted, is based on the city-specific estimate
rather than on the overall estimate.

In general, it is naı̈ve to assume that the city-
specific effect estimate is better than the overall
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estimate merely because it is derived from the city
of interest. In the case where there is no true hetero-
geneity, variations in the city-specific effect estimates
about the overall mean are purely stochastic. In that
case, the overall effect estimate is clearly superior.

In the presence of heterogeneity, city-specific es-
timates vary around the overall effect estimate for
two reasons: (1) due to true heterogeneity in the es-
timates, and (2) due to additional stochastic error.
A city-specific estimate that reflects the first source
of variation, but not the second, is preferable. This
is obtainable by using a shrunken empirical Bayes
estimate.

True variation in the concentration-response es-
timates among cities presumably reflects differences
(e.g., sources of particles, ventilation characteristics
of housing, health of population) that are, in princi-
ple, identifiable. Meta-regression is an approach that
seeks to identify the sources of such heterogeneity.
An alternative city-specific estimate is obtained by
using the slope predicted for that city through a meta-
regression on effect modifiers. This approach has the
added advantage that it can be applied to risk as-
sessment in cities that were not part of the original
studies, and therefore do not have city-specific esti-
mates. The APHEA-2 study found that annual level
of NO2 and annual temperature mean at the city level
both act as modifiers of the effect of PM10 on all-
cause mortality, explaining a substantial part of the
observed between-cities heterogeneity in Europe.(6)

A geographical (East-West) difference was also iden-
tified in the APHEA-1 study.(1) Although geograph-
ical area could act as a surrogate for differences in
health or environmental indices, such a finding could
imply a bimodal underlying distribution of risk.

In the framework of the APHEIS program
(Air Pollution and Health: A European Information
System—www.apheis.net)(3,4) a health impact assess-
ment of air pollution in 26 European cities was per-
formed. This raised the question of whether it was
preferable to use risk coefficients from city-specific
models, from empirical Bayes estimates for each city,
or from meta-regression estimates for each city.

In this article we will demonstrate and discuss the
impact of implementing different approaches to esti-
mating the short-term air pollution effect on the at-
tributable number of deaths in 21 European cities that
were part of the APHEA-2 project and one that was
not, but was part of the APHEIS.(4) Robustness of the
various estimates to model assumption violations has
been evaluated in a simulation study.

2. METHODS

In multicity studies data analysis is generally im-
plemented in two stages. In the first stage, data from
each city are analyzed separately (to allow more local
covariate control) whereas in the second stage, evi-
dence across cities is combined using meta-regression
techniques. Briefly, daily counts of deaths from each
city were assumed to come from a nonstationary,
overdispersed Poisson process. The concentration-
response function is then assumed to be exponential
and to follow
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vant health outcome in city c on day t, Pc
t daily levels of

PM10 in city c, βc
p the corresponding parameter to be

estimated, Zc
it the independent covariates other than

PM10, and Sc
i (Zc

it) the smooth functions of these co-
variates. Nonpollutant covariates include long-term
time trend, season, calendar events, influenza, and
meteorological variables. The smooth functions cap-
ture the nonlinear relationships with time-varying
covariates and calendar time. Penalized regression
splines were used as smoothing functions, as im-
plemented by Wood(8) in the R Development Core
Team.(9)

City-specific PM10 estimates were combined us-
ing the method developed by Berkey et al.(10) In
summary, a random-effects model regressing the esti-
mates from each city against potential effect modifiers
was performed. The model assumptions are
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where β̂c
p is the estimated PM10 effect estimate in

city c and σ 2
W,c and σ 2

B are the within-city c and
the between-cities variances, respectively. It should
be noted that σ 2

W,c is estimated in the first-stage
analysis. The between-cities variance, σ 2

B, was it-
eratively estimated using the maximum likelihood
method described in Berkey et al.(11) For details about
APHEA-2 first-stage and second-stage analysis, refer
to Touloumi et al.(12)

An alternative to the city-specific estimates and
to the overall (pooled random effects) estimate is the
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use of the city-specific shrunken estimates. These were
derived following Longford.(13) Let β̄ be the overall
pooled cities estimate, without regressing on any ef-
fect modifier (Xcα = β̄ in this case). The shrinkage
estimator is the conditional expectation of the city
mean, µc

p, given the observed mean β̂c
p. The variance
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Shrunken estimates, known also as empirical
Bayes estimates, could be considered as posterior
probability distributions as they include information
from the overall and the city-specific estimates.

Risk analyses are often required in cities where
no air pollution study has been carried out. To obtain
an estimate in this case, we followed the approach pro-
posed by Post et al.,(14) and estimated the underlying
distribution of βs as an equally weighted mixture of
the shrunken estimates derived in the previous step.
That is, f (β̄ p,mix) = 1

k

∑k
i=1 fcβ̂

c
p,Shr , where k is the

number of cities and f c denotes the distribution of
the empirical Bayes estimate at city c. The mean of
this mixture distribution was used as an estimate for
the new city.

Finally, we used a meta-regression-based estimate
derived from the APHEA-2 study. The two effect
modifiers found to explain a substantial part of the
observed heterogeneity were annual mean of NO2

and annual mean temperature. Therefore, for each
city we predicted the coefficient for PM10 based on
the model:

β̂c
p,NO2−Temp = E

(
β̂c

p

∣∣ NO2, Temp
)

= β̄ ′ + β ′
1NO2 + β ′

2Temp. (3)

Regression coefficients and associated variance-
covariance matrix were provided by the APHEA-2

project.(15) This approach can also accommodate a
new city.

We used the above-described effect estimates
(observed city-specific β̂c

p, shrunken city-specific
β̂c

p,Shr , pooled β̄, mean of estimated mixture dis-
tribution β̄c

p,mix, and adjusted-for-effect modifiers
β̂c

p,NO2−Temp) to calculate the attributable number of
deaths in each city. The relative risk (RR) is expressed
in our analysis as RR�x = exp(β × �x) where �x
represents a change by x µg/m3 in the daily PM10 lev-
els. To estimate the attributable number of deaths
we need to define a baseline exposure. Let Ȳ be the
annual mean of daily mortality, which reflects the im-
pact of mean daily PM10 levels, x̄. The baseline mor-
tality incidence YF at the baseline PM10 level x0 can
then be estimated as

YF = Ȳ ×
(

1 − RR�(x0−x̄) − 1
RR�(x0−x̄)

)
.

The attributable number of deaths when the PM10

levels increase from x0 to x1 is

AR = YF × (
RR�(x1−x0) − 1

)
.

We have set the baseline level to 10 µg/m3 in this
study.

3. RESULTS

Table I shows the city-specific estimated regres-
sion coefficients and their standard errors for the ef-
fect of each 1 µg/m3 increase in PM10 levels on total
mortality, as reported in the APHEA-2 project.(15)

It also shows the annual mean of daily tempera-
ture and NO2 levels, the two modifiers in the meta-
regression. The coefficients ranged from −0.000465
in Erfurt to 0.001554 in Lyon. The annual tempera-
ture exhibited a range of around 14◦C with the mini-
mum value observed in Helsinki and the maximum in
Tel Aviv. Stockholm was the cleanest city in terms of
NO2 levels with an annual mean of 26 µg/m3 whereas
Milan showed the highest levels with annual mean of
94 µg/m3.

There was significant between-cities heterogene-
ity in the PM10 effect estimates and therefore the
pooled effect was calculated based on a random-
effects model.(10) The overall estimate was 0.00055
(SE = 0.000098). We then calculated the shrunken es-
timators in each location following Equations (1) and
(2). Fig. 1 shows the estimated density for each of the
shrunken estimators (i.e., in each city). The estimated
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Table I. Local Estimates for Total Mortality PM10 Regression
Coefficients with Their Associated Standard Errors and Annual

Mean of Daily Temperature and NO2 Levels in Cities
Participating in the APHEA-2 Study

PM10 Annual Annual
City Coefficient SE Temperature NO2

Athens 0.001311 0.0003 17.8 74.0
Barcelona 0.000575 0.0002 16.4 68.6
Basel 0.000462 0.0005 10.7 38.2
Birmingham 0.000305 0.0003 9.6 45.9
Budapest −0.000248 0.0005 10.5 76.3
Cracow 0.000155 0.0004 8.3 43.5
Erfurt −0.000465 0.0004 8.8 39.5
Geneva −0.000059 0.0005 9.5 44.9
Helsinki 0.000389 0.0004 6.1 32.6
London 0.000591 0.0002 11.8 60.7
Lyon 0.001554 0.0005 12.4 63.0
Madrid 0.000372 0.0003 14.5 70.0
Milan 0.000901 0.0002 13.7 93.5
Paris 0.000411 0.0003 12.0 52.8
Prague 0.000097 0.0002 9.9 57.5
Rome 0.001333 0.0003 16.7 87.7
Stockholm 0.000479 0.0009 7.5 25.7
Tel Aviv 0.000522 0.0003 20.4 69.7
Teplice 0.000876 0.0004 8.8 32.4
Torino 0.000938 0.0002 14.3 75.9
Zurich 0.000365 0.0004 10.9 40.1
Toulouse NA NA 13.8 30.0

distribution of the pooled estimate is superimposed
(i.e., overall), based on the random-effects model, and
the estimated mixture distribution of the empirical
Bayes estimates across all the cities. Substantial depar-
tures from the population mean (overall) estimate can
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Fig. 1. Probability densities of PM10 shrunken coefficients for mor-
tality in each of the 21 cities and the resulting estimated mixture dis-
tribution from all cities.The probability density of the pooled over-
all cities (using random-effects model) coefficient is also shown.

be seen in several cities. The underlying distribution of
the empirical Bayes estimates displays the same mean
as the pooled estimate, but it is more flat, reflecting
the heterogeneity between cities. Consequently, the
corresponding 95% credible interval for the relative
risk for the total mortality associated with a 10 µg/m3

increase in PM10 (0.994, 1.014) is larger than that
derived from the pooled estimate (1.002 to 1.006). We
also applied Equation (3) to calculate the city-specific
estimate based on the meta-regression.

Fig. 2 shows the city-specific relative risks and
its 95% confidence interval of mortality for a
10-µg/m3 increase in daily PM10 levels as estimated
using the shrunken estimates. The local estimates of
the RRs as well as the estimates predicted from the
meta-regression are also shown. For comparison, the
overall estimate provided by the RE model is also
shown. As expected, the shrunken estimates are lo-
cated between the local and the overall estimates so
that they can be considered as a weighted mean of
these two estimates.

Except in four cities (Budapest, Stockholm, Tel
Aviv, and Teplice) the adjusted estimates are close to
the shrunken estimates. This concordance is due to the
fact that temperature and NO2 annual means tend to
explain the observed heterogeneity between the local
estimates.

In Table II, the number of deaths attributable
to PM10 exposure calculated using the various esti-
mates for the mortality-PM10 RR are shown. A re-
duction in the annual PM10 mean from the observed
value to 10 µg/m3 was assumed in each city. There
is substantial variability in the attributable numbers
of deaths at the city level depending on the choice
of the RR estimate. The calculated number of deaths
using the shrunken estimates and those adjusted for
temperature and NO2 ranged from, respectively, 1/6
and 1/15 in Erfurt and in Stockholm to more than
double in Rome the one using the overall RR esti-
mate. The effect of the choice-of-risk coefficient on
overall risk in all the cities is much less. When we sum
the attributable risks across all locations, the expected
numbers of deaths using the shrunken estimate or the
meta-regression estimate are, respectively, 25% less
or 11% larger than those estimated using the overall
pooled estimate in each city.

4. SIMULATION STUDY

To evaluate the robustness of the overall and of
the shrunken estimates when the underlying distri-
bution of the city-specific estimates is bimodal, we
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Fig. 2. City-specific shrunken estimates (95% CI) of relative risk for mortality per 10 µg/m3 increase in PM10 levels. Local and adjusted
for effect modifiers (NO2 and temperature) estimates are also shown. The overall effect as estimated by the random-effects model is also
shown.

Table II. Attributable Number (95% CI) of Deaths for a Reduction of the Annual Mean PM10 from the Observed Value to 10 µg/m3

Calculated Under Various Estimates for Corresponding Relative Risk

Adjusted for Effect Random-Effects
Local Estimates Shrunken Estimates Modifiers Estimates Pooled Estimate

City N CI− CI+ N CI− CI+ N CI− CI+ N CI− CI+

Athens 1119 559 1691 461 108 819 720 517 924 476 309 643
Barcelona 443 118 774 319 62 579 567 414 723 424 275 574
Basel 32 −32 98 28 −4 59 18 2 35 38 25 51
Birmingham 98 −81 280 101 −21 224 95 34 157 177 115 239
Budapest −226 −1134 712 185 −233 609 550 301 800 494 322 668
Cracow 50 −182 290 106 −30 245 74 4 145 175 114 237
Erfurt −48 −128 35 9 −35 55 21 −1 44 55 36 75
Geneva −3 −49 45 11 −10 33 13 4 22 26 17 34
Helsinki 24 −29 77 23 −4 51 3 −15 22 34 22 45
London 682 236 1132 436 81 793 591 437 745 635 414 858
Lyon 158 49 272 57 9 107 57 44 71 57 37 77
Madrid 229 −95 558 198 −30 428 423 336 510 338 220 457
Milan 403 201 609 260 105 418 395 251 541 248 161 336
Paris 312 −100 727 274 −11 561 336 220 452 417 272 563
Prague 82 −248 419 117 −140 379 348 198 499 458 297 621
Rome 1286 706 1882 766 382 1156 904 682 1129 541 351 732
Stockholm 29 −76 136 24 −6 55 2 −17 21 34 22 45
Tel Aviv 205 −7 423 124 −27 277 345 198 493 216 141 293
Teplice 214 45 387 127 24 231 35 −31 102 135 88 183
Torino 450 272 633 249 94 408 356 278 435 268 174 363
Zurich 51 −55 159 50 −10 111 40 8 72 77 50 104
Total 5592 −29 11338 3926 304 7599 5893 3863 7941 5324 3462 7199
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ran a simulation study. City-specific coefficients were
generated by a bimodal normal distribution with the
means, for each mode respectively, set equal to 0.5
and 1.5 times the overall estimate initially found, and
with equal variances, defined as half of the variance
of the overall estimate. Twenty coefficients, represent-
ing 20 cities, were thus derived from the bimodal dis-
tribution. To reflect the random variation for each
one coefficient we assigned a standard error, gener-
ated by a gamma distribution with a shape equal to 1
and a rate equal to the standard error of the pooled
estimate. One thousand replications for each of the
20 coefficients were drawn from a normal distribu-
tion with mean equal to the coefficient in city c and
standard error derived from the gamma distribution.
We label these estimates “original estimates,” and
they represent the case where we use for each city
the results of a regression in that city. For each set of
20 coefficients, the random-effects pooled estimate as
well as the city-specific shrunken estimates were cal-
culated, and the percentage of bias was estimated as
[(true-estimated)/true] × 100 for both “original” and
shrunken estimates.

Fig. 3 shows the distribution of the true estimates
as well as the generated “original” and shrunken es-
timates. Although there is a slight shift toward the
overall mean in the distribution of the shrunken esti-
mates, the overall pattern (i.e., bimodal distribution)
is quite well reproduced. The overall estimate (not
shown) was, as expected, purely unimodal. The aver-
age bias was mostly 0% for the “original” and −3%
for the shrunken estimates, but the range of the bias
was, respectively, equal to (−510; 571) and (−248;
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Fig. 3. True, original, and shrunken estimates density from 1,000
simulations.

195). Hence the range of potential bias is reduced
when using the shrunken estimates. For the overall
estimate, the average bias was −30% and the range
was (−125; 42). If we increase the standard deviation
in the gamma distribution by a factor of 10, then the
“original” and shrunken estimates’ distributions are
no longer bimodal, and the range of the bias increases
(−449; 367) for the shrunken estimates, but explodes
(−5146; 5667) for the original estimates. The range
for the overall estimates stays quite constant (−194;
68).

5. DISCUSSION

In this study we have shown that although the
overall sum of the deaths attributable to PM10 in
21 European cities is not strongly influenced by the
method used to estimate RRs, this is not true at the
city level. Applying a shrunken estimate in Rome or
in Erfurt would lead to almost 80% more deaths or
400% fewer deaths, respectively, than those calculated
with the overall estimate. The heterogeneity observed
in these cities does not favor applying of a single es-
timate. Neither does it militate for applying the city-
specific estimate, as that estimation would also lead
to over- or underestimating the shrunken estimates
by 176% and 613%, respectively.

We also applied the overall, the meta-analytic,
and the mean of the estimated underlying distribu-
tion coefficients to a city, Toulouse in France, not
part of the APHEA-2 study, but part of the APHEIS
project. The overall or estimated underlying estimates
gave 25 deaths per year compared to 13 for the ad-
justed approach. More interesting was the difference
in the 95% confidence interval around these esti-
mates: while the overall estimates show an extremely
narrow confidence interval (16, 33), the estimated
estimate showed a much larger interval (−26, 62),
as did the adjusted one (−5, 31). This indicates that
excessive certainty may be suggested by naı̈ve ap-
proaches to risk assessment.

The shrunken estimates approach has already
been explored and applied in the case of air pol-
lution.(14) The shrunken estimates have the nice
property that they derive the estimate at the local
level by combining information from the city-specific
estimate and the overall estimate. They also reduce
the variability of the local estimate by incorporating
information from other cities. A key disadvantage of
such an estimate is that it can be applied only in cities
that are part of the initial analysis.
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The adjusted estimate also provides a more local
estimate as it takes into account potential effect modi-
fiers. It also reduces uncertainties around the estimate.
It is more widely applicable as one just needs to have
information on these two effect modifiers to calculate
it. The two particular effect modifiers (NO2 and tem-
perature) that have been identified so far for the PM10

mortality relationship should be seen as surrogates
for different patterns of air pollution or exposure of
the population but they could also be just the best
set of covariates from a statistical point of view, ex-
plaining the heterogeneity. The effect of temperature
could be a surrogate of the ventilation rate between
cities. In that case we could not apply annual temper-
ature as an effect modifier on a city with a high rate
of air-conditioned houses.(16) This is not common in
Europe, but quite common in warmer climates in the
United States. This hypothesis, although a plausible
one, is only one of several, equally plausible, hypothe-
ses. The use of the adjusted estimate, thus, should be
limited to cities presenting similar characteristics to
those initially observed. The discrepancy between the
shrunken and the adjusted estimates, found in some
cities as Stockholm, highlights the limit of such indica-
tors, useful to explore the reasons of the heterogene-
ity, but not to explain them.

The use of the local estimate is subject to too much
noise to be reliable. The two derived city-specific es-
timates could be alternatively used depending on the
data availability. For cities in the initial study, both
give similar results. One may still prefer the shrunken
estimate, as it does not make any inference on the re-
lation with potential effect modifiers. For cities with
available data on effect modifiers, the adjusted esti-
mate has some nice properties but its use requires
careful attention.

Applied to a single city, the overall estimate does
not adequately reflect the heterogeneity present in
the data. We have shown that this could be better
taken into account by deriving an estimated under-
lying distribution that represents the dispersion ob-
served between cities. Both of these techniques are
an improvement in reducing the uncertainties sur-
rounding pollutant coefficient, but are still affected
by the uncertainties around the initial estimates of
these coefficients.

Each of the methods described in this work de-
pends heavily on the assumption that city-specific
models from which city-specific estimates were de-
rived have precluded at least the known sources of
bias, such as confounding, model misspecification, etc.

The city-specific estimates utilized in our work were
derived from the APHEA-2 project, which is a well-
described European multicity study that used a de-
tailed prespecified protocol for both data collection
and data analysis. Potential bias, although as always
possible, has been discussed extensively within the
project and several actions have been taken to correct
it.

Given that unbiased results are obtained in the
first-stage analysis, we have presented results from
various alternative risk estimates. Whereas shrunken
estimates are, in principle, preferable, at least in
terms of efficiency, for the local estimates, questions
about the effect of departures from unimodal normal
distribution of the estimates on the shrunken ones
have been raised. Based on our limited simulation
study, we have shown that shrunken estimates are
preferable to the local estimates even if data
are derived from a bimodal distribution. In gen-
eral, shrunken estimates (and local estimates) can
reproduce the underlying distribution, provided that
there is enough information in the data. However,
when the noise in the city-specific estimates is largely
increased, then data do not give enough insight into
the true underlying distribution in any case. Even in
such situations, shrunken estimates will reduce the
margin of error compared to original estimates.

Given the limitations of each of the different es-
timates outlined above, we recommend the use of the
shrunken estimate in cities for which this option is
available. For other cities, which estimate is the most
appropriate is less straightforward since the adjusted
estimate reflects a local situation but requires strong
assumptions about the surrogacy of the effect mod-
ifiers, whereas the estimated distribution of the es-
timates reflects a general situation with greater un-
certainties. In such cases, applying both coefficients
would give a reasonable range of estimates.
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et dans l’agglomération parisienne. Sante Publique, 6(4), 1–
14.

6. Katsouyanni, K., Touloumi, G., Samoli, E., Gryparis, A., Le
Tertre, A., Monopolis, Y., Rossi, G., Zmirou, D., Ballester, F.,
Boumghar, A., Anderson, H. R., Wojtyniak, B., Paldy, A.,
Braunstein, R., Pekkanen, J., Schindler, C., & Schwartz, J.
(2001). Confounding and effect modification in the short-term
effects of ambient particles on total mortality: Results from 29
European cities within the APHEA2 project. Epidemiology,
12(5), 521–531.

7. Samet, J. M., Dominici, F., Curriero, F. C., Coursac, I., & Zeger,
S. L. (2000). Fine particulate air pollution and mortality in
20 U.S. cities, 1987–1994. New England Journal of Medicine,
343(24), 1742–1749.

8. Wood, S. N. (2003). Thin-plate regression splines. Journal of
the Royal Statistical Society [Series B], 65, 95–114.

9. R Development Core Team. (2004). R: A Language and En-
vironment for Statistical Computing. Vienna, Austria: R Foun-
dation For Statistical Computing.

10. Berkey, C. S., Hoaglin, D. C., Antczak-Bouckoms, A.,
Mosteller, F., & Colditz, G. A. (1998). Meta-analysis of mul-
tiple outcomes by regression with random effects. Statistics in
Medicine, 17(22), 2537–2550.

11. Berkey, C. S., Hoaglin, D. C., Mosteller, F., & Colditz, G. A.
(1995). A random-effects regression model for meta-analysis.
Statistics in Medicine, 14(4), 395–411.

12. Touloumi, G., Atkinson, R., & Le Tertre, A. (2004). Analysis
of health outcome time series data in epidemiological studies.
Environmetrics, 15, 101–117.

13. Longford, N. T. (1993). Random Coefficient Models (p. 18).
Oxford: Oxford University Press.

14. Post, E., Hoaglin, D., Deck, L., & Larntz, K. (2001). An empir-
ical Bayes approach to estimating the relation of mortality to
exposure to particulate matter. Risk Analysis, 21(5), 837–842.

15. Katsouyanni, K., Touloumi, G., Samoli, E., Petasakis, Y.,
Analitis, A., & Le Tertre, A. (2003). Sensitivity Analysis of
Various Models of Short-Term Effects of Ambient Particles on
Total Mortality in 29 Cities in APHEA2 (pp. 157–164). Boston,
MA: Health Effects Institute.

16. Janssen, N. A., Schwartz, J., Zanobetti, A., & Suh, H. H. (2002).
Air conditioning and source-specific particles as modifiers of
the effect of PM(10) on hospital admissions for heart and
lung disease. Environment and Health Perspectives, 110(1),
43–49.


